生成AIエンジニアLab

生成AIの最新技術を、ハンズオンで解き明かす実践ラボです。
次の一歩を描きながらAI時代のキャリアを模索する羅針盤を目指します。

カテゴリ: 生成AI

※本小説は、生成AI(GPT-4o, o1)で執筆しています

 夜明け前の静寂が、薄暗い部屋に漂っている。カーテンの隙間から差し込む微かな光が、壁に淡い影を映し出していた。その静けさを破るように、目覚ましの音が優しく耳に届く。「おはようございます、今日も最高の一日をお過ごしください。」その声はどこか人工的でありながらも、心地よい温かみを感じさせる。まるで長年の友人がそばで囁いているかのようだ。

 僕はゆっくりと瞼を開け、天井を見上げた。白い天井に映る微かな光の揺らめきが、新しい一日の始まりを告げている。ベッドから身体を起こし、伸びをしながら深呼吸をする。新鮮な空気が肺に満ち、眠気が少しずつ薄れていくのを感じる。

 枕元に置かれたAI端末が、柔らかな光を放っている。その光は温かく、心を落ち着かせる効果があるようだ。僕は端末に手を伸ばし、画面に表示されたメッセージを確認する。「本日のスケジュールをお伝えします。午前9時に顧客とのミーティング、午後2時にプロジェクトチームとの打ち合わせがあります。」端末は僕の一日の予定を完璧に把握している。スケジュールだけでなく、食事の栄養バランス、未読のメール、昨夜の睡眠状態までも細かく管理されている。

続きを読む

30代後半にもなってくると、会社から管理職の声がかかる人も出てくるだろう。管理職になるべきか、それとも現場で技術を磨き続けるべきか、多くのAIエンジニアが迷う時期でもある。
本記事では、その迷いを解消するための参考材料を提示する。

1. 自分の「管理職としての力量・適性」を客観的に評価する

管理職の仕事を一言で言うと、「大きな仕事を分解し、与えられたリソースを元に、他者と協力して成果を出すこと」と言える。

管理職には大きな目標が降ってくるため、担当者レベルの粒度に分解し、それぞれできそうな部下に仕事を振る。もし、部下が忙しかったり、スキルが足りなかったり、リスクが大きすぎる場合は、お金を払って別会社や他部署に依頼をする。そして、依頼した仕事をモニタリングして、問題があれば適切に指示する。

もしあなたが、このようなタスク管理、リスク判断、他者への指示ができる人で、かつ仕事内容に面白みを感じるならば、管理職適性は高いだろう。マネジメントスキルは、経験でしか身に付かないため、40代以降の仕事としては筋が良い。また、転職時でも、よほど企業規模が異なる場合を除き、非管理職から管理職の転職は難しい。そのため、自社で管理職になれる機会があるならばなっておくという考え方もできる。
続きを読む

生成AIは、時々間違った情報を作り出してしまうことがあります。これを「ハルシネーション」と呼びます。この記事では、ハルシネーションがどうして起こるのか、そしてそれを防ぐ方法を説明します。

ハルシネーションが起こる理由

ハルシネーションは、大きく3つの原因で起こります。

1. LLMの学習データが原因

LLMの学習データが、ハルシネーションの大きな原因になります。

誤情報の含有: LLMが学習するデータに古い情報や誤った情報が含まれている場合、モデルはその情報を学習し、誤った答えを生成することがあります。LLMはデータ内のパターンを学習するため、誤情報であってもそれを再現してしまう可能性があります。

知識の限界: LLMが学習するデータに特定分野の知識が十分に含まれていない場合、正確な答えを出せないことがあります。この場合、モデルは他の類似した情報に基づいて推測するため、誤った情報を生成するリスクが高まります。
続きを読む

RAG (Retrieval Augmented Generation) システムの設計における失敗ポイントと、ケーススタディから得られた教訓を報告されている論文を紹介します。

タイトル:Seven Failure Points When Engineering a Retrieval Augmented Generation System

RAGシステムが失敗する理由

一般的にRAGシステムの精度が低い原因は、検索に起因する部分が大きいと言われています。RAGは、ユーザーのクエリから検索するわけですが、クエリが曖昧だと解釈が難しいですし、一方複雑なクエリも、それはそれで正確に回答するのは難しいです。

また、参照するドキュメントも様々な落とし穴があります。ドキュメントが章ごとに分かれており、内容が正しく、明確な文章で記載されていれば問題ありません。しかし、情報が古かったり、ドキュメントの形式がばらばらだったり、ページ構成が複雑だと、検索で引っ掛けるのが難しくなります。
続きを読む

Azure OpenAI Service上のGPT-4を、Pythonから利用する方法を解説します。

Azure OpenAI Serviceは、OpenAIのChatGPTやGPT-4などのモデルを、Microsoft Azure環境で利用できるサービスです。

開発者は、GPTモデルをREST APIとして利用できます。タスクとしては、テキスト生成、質問応答、文章要約、感情分析などが実現できます。また、Azureの拡張性とセキュリティ機能を利用することで、企業向けの開発が可能です。

Azure OpenAI Serviceを利用するためには、Azureサブスクリプションの登録に加え、「Azure OpenAI Serviceのアクセス申請」が必要になります。
(追記:2023年9月に、GPT-4のWaiting Listの申請が不要になりました)続きを読む

↑このページのトップヘ