生成AIエンジニアLab

生成AIの最新技術を、ハンズオンで解き明かす実践ラボです。
次の一歩を描きながらAI時代のキャリアを模索する羅針盤を目指します。

カテゴリ: AI人材になる方法

人工知能ブームがますます過熱感を帯びています。先週アルファ碁ゼロが、ルールを覚えさせるだけで人間を超えたというニュースが出ました。顧客や上司から説明を求められ、強化学習と教師あり学習の違いを解説したAI担当者も多かったのではないでしょうか。

先月上場したPKSHA Technologyが、時価総額1600億円を超えました。PER700倍、PBR170倍という信じられないような指数が付いています。少しでも株を知っている人なら、この指数がどれほど期待値を織り込んでいるか理解できると思います。

今の人工知能ブームは踊り場はありません。人工知能株式会社は、グローバルで国と企業を巻き込み信じられないスピードで進化し続けています。技術進歩が他の技術の進歩を生み出すことで、指数関数的に進歩しているからです。

本記事では、人工知能開発に携わる著者が、人工知能の最前線をご紹介し、ビジネスパーソンの生き残り方法を提案してみます。

過去記事:これだけは知っておけ!PythonでAI開発の基礎まとめ

続きを読む

人工知能が出来ることを、前提知識がない方向けに解説しました。

参考書籍
ITエンジニアのための機械学習理論入門
中井 悦司
技術評論社
2015-10-17


続きを読む

この記事は、以下の方向けに執筆しています。

・とにかくAIブームに乗りたい方
・転職してAI案件に携わりたい方
・AIに必要な知識だけをざっくり身に付けたい方

関連記事:AI人材になるにはスキルよりまず職種を選択しよう続きを読む

就職を控える大学生や若手会社員にとって、これからの変化の波を読むことは重要なことです。自分が身に付けたスキルや経験が、将来不要になるのではと心配していることでしょう。

今起きている社会変化は、"人工知能"というテクノロジーが牽引しています。その変化はとても急激です。人間が把握できる情報量では追い付けなくなっています。

しかし人工知能分野の事業開発に携わる一人として、これからの生活がどう変わるか、大枠での予測は可能だと思い、5年後に起こりうることを予測しました。

未来予測の考え方
①メタップス佐藤さんの本「未来に先回りする思考法を」を大いに参考にする
②自分が人工知能の仕事で体験したことを参考にする
③世の中の統計データを参考にする
    続きを読む

理系研究者は、この大自然を対象に、仮説を立て、実験を行い、データを集め、法則を発見している。
一方データサイエンティストは、企業を取り巻く市場環境や生産設備などに対して、データを集め、分析し、パターンという法則を発見する。 その法則は、自然科学分野のような普遍性は持たない。その企業でしか役に立たない局所的な法則だ。しかし、その企業が業績を大きく向上させるくらいの効果は十分に持つ。

データサイエンティストが科学する対象は、主にマーケティングや経営学の領域だ。文系学問の領域に、理系研究者が行うデータによる仮説検証の手法を持ち込んでいる。
続きを読む

↑このページのトップヘ