新規事業のつくり方

新しいことを学ぶことが好きです。今は機械学習や自然言語処理に興味があります。

カテゴリ: 人工知能

本記事では、機械学習モデルの評価方法をまとめて解説します。

機械学習モデルの評価は「ホールドアウト法」と「交差検定(クロスバリデーション)」と「混合行列」が分かれば大丈夫です。Pythonとscikit-learnのコードと合わせて見ていきます。

関連記事:AIエンジニアが教えるゼロから機械学習の勉強法
続きを読む

ディープラーニングを、世界一簡単に実装する方法を見つけましたのでご報告します。

参考書籍





続きを読む

人工知能が出来ることを、前提知識がない方向けに解説しました。

参考書籍
ITエンジニアのための機械学習理論入門
中井 悦司
技術評論社
2015-10-17


続きを読む

機械学習のデータ処理周りの実務で、よく使う関数をまとめました。

目次
はじめに
      Pandasとは
      scikit-learnとは
      NumPyは使わないの?
      機械学習の言語はpythonでいいの?
      機械学習(AI開発)の流れ
1.データの準備
      データフレームを定義する(DataFrame)
      csvファイルを読み込む(read_csv)
2.データの前処理
   <欠損値編>
      欠損値をカウントする(isunull)
      欠損値を削除する(dropna)
      欠損値を補完する(Imputer)
   <文字列編>
      文字列データを数値に変換する(map)
   <外れ値編>
      グラフを作成する(plot)
      列の平均値/中央値を出力する(mean/median)
      列の最大値/最小値を確認する(max/min)
3.データの基礎分析
      データから特定の列だけを選択する(iloc/ix)
      データフレームに列を追加する(’カラム名’)
4.特徴量設計
      データを標準化する(StandardScaler)
      相関係数を出力する(corr)
      特徴量データと出力データに分割する(iloc)
      学習データとテストデータに分割する(train_test_split)

続きを読む

就職を控える大学生や若手会社員にとって、これからの変化の波を読むことは重要なことです。自分が身に付けたスキルや経験が、将来不要になるのではと心配していることでしょう。

今起きている社会変化は、"人工知能"というテクノロジーが牽引しています。その変化はとても急激です。人間が把握できる情報量では追い付けなくなっています。

しかし人工知能分野の事業開発に携わる一人として、これからの生活がどう変わるか、大枠での予測は可能だと思い、5年後に起こりうることを予測しました。

未来予測の考え方
①メタップス佐藤さんの本「未来に先回りする思考法を」を大いに参考にする
②自分が人工知能の仕事で体験したことを参考にする
③世の中の統計データを参考にする
    続きを読む

↑このページのトップヘ