新規事業のつくり方

新しいことを学ぶことが好きです。今は機械学習や自然言語処理に興味があります。

カテゴリ: 人工知能

みなさんは「AI人材」という言葉をご存知でしょうか。

第4次産業革命とも言われる人工知能ブームは、文字通り急激な変化を起こしました。企業は必死で戦略を見直しているものの、そもそも見直すだけの知識を持つ人材が社内におらず袋小路です。見直せる人材がいないので、必要な人材像を定義出来ず、とりあえず「AI人材」とビジネス界隈でよく利用されています。

とにかく今、圧倒的な人材不足です。ではこの「AI人材」にどしたらなれるのでしょうか。

関連記事:人工知能(AI)ブームに乗りたい人に切符を提供してみる
続きを読む

人工知能ブームがますます過熱感を帯びています。先週アルファ碁ゼロが、ルールを覚えさせるだけで人間を超えたというニュースが出ました。顧客や上司から説明を求められ、強化学習と教師あり学習の違いを解説したAI担当者も多かったのではないでしょうか。

先月上場したPKSHA Technologyが、時価総額1600億円を超えました。PER700倍、PBR170倍という信じられないような指数が付いています。少しでも株を知っている人なら、この指数がどれほど期待値を織り込んでいるか理解できると思います。

今の人工知能ブームは踊り場はありません。人工知能株式会社は、グローバルで国と企業を巻き込み信じられないスピードで進化し続けています。技術進歩が他の技術の進歩を生み出すことで、指数関数的に進歩しているからです。

本記事では、人工知能開発に携わる著者が、人工知能の最前線をご紹介し、ビジネスパーソンの生き残り方法を提案してみます。

過去記事:これだけは知っておけ!PythonでAI開発の基礎まとめ

続きを読む

ロジスティック回帰分析は、2値の分類モデルを作るアルゴリズムです。そして、分類結果の発生確率を予測できます。例えばある人が「ガンである確率 90%」 のような予測ができます。

また、モデルの中身を数式として理解できるので、ディープラーニングのようにブラックボックスになりません。つまり、どの説明変数がモデルの判定に重要かが人間でも分かります。

一方、ロジスティック回帰は、線形分離可能なクラスに対してのみ高い性能が発揮されます。非線形の問題はうまく学習できないという重回帰分析と同じ問題を抱えています。
加えて、ロジスティック回帰の説明変数は、数量データのみ利用可能です。カテゴリデータは利用できません。

過去記事:ランダムフォレストで特徴量の重要度を評価する
続きを読む

機械学習界隈で、最強アルゴリズムの一角を占めていたランダムフォレスト。ディープラーニングが登場した後急速に存在感をなくすものの、その利便性と強力さから多くのデータサイエンティストが現役利用中。

scikit-learnでのランダムフォレスト、分類モデルと重要度評価の実装方法まとめました。

決定木の問題点

決定木は、上から順に条件分岐を作って分類モデルを作る手法です。ルールが可視化できる、正規化や標準化などのデータ加工が不要など、素晴らしいアルゴリズムです。
しかし、決定木は過学習を起こしやすいという問題点がありました。

前の記事:Pythonの決定木分析できのこ派とたけのこ派を予測する続きを読む

「決定木」は、おそらく世界で最も利用されている機械学習アルゴリズムです。教師ありの学習データから、階層的に条件分岐のツリーを作り、判別モデルを作ることができます。

今回は決定木の活用例として、きのこ派とたけのこ派を予測する人工知能を作りました。プログラム言語は、Pythonとscikit-learnです。

過去記事:AIエンジニアが教えるゼロから機械学習の勉強法続きを読む

↑このページのトップヘ