新規事業のつくり方

新しいことを学ぶことが好きです。今は機械学習や自然言語処理に興味があります。

カテゴリ: 人工知能

機械学習のデータ処理周りの実務で、よく使う関数をまとめました。

目次
はじめに
      pandasとは
      scikit-learnとは
      numpyは使わないの?
      機械学習の言語はpythonでいいの?
      機械学習(AI開発)の流れ
1.データの準備
      データフレームを定義する(DataFrame)
      csvファイルを読み込む(read_csv)
2.データの前処理
   <欠損値編>
      欠損値をカウントする(isunull)
      欠損値を削除する(dropna)
      欠損値を補完する(Imputer)
   <文字列編>
      文字列データを数値に変換する(map)
   <外れ値編>
      グラフを作成する(plot)
      列の平均値/中央値を出力する(mean/median)
      列の最大値/最小値を確認する(max/min)
3.データの基礎分析
      データから特定の列だけを選択する(iloc/ix)
      データフレームに列を追加する(’カラム名’)
4.特徴量設計
      データを標準化する(StandardScaler)
      相関係数を出力する(corr)
      特徴量データと出力データに分割する(iloc)
      学習データとテストデータに分割する(train_test_split)

続きを読む

この記事は、以下の方向けに執筆しています。

・とにかくAIブームに乗りたい方
・転職してAI案件に携わりたい方
・AIに必要な知識だけをざっくり身に付けたい方
続きを読む

就職を控える大学生や若手会社員にとって、これからの変化の波を読むことは重要なことです。自分が身に付けたスキルや経験が、将来不要になるのではと心配していることでしょう。

今起きている社会変化は、"人工知能"というテクノロジーが牽引しています。その変化はとても急激です。人間が把握できる情報量では追い付けなくなっています。

しかし人工知能分野の事業開発に携わる一人として、これからの生活がどう変わるか、大枠での予測は可能だと思い、5年後に起こりうることを予測しました。

未来予測の考え方
①メタップス佐藤さんの本「未来に先回りする思考法を」を大いに参考にする
②自分が人工知能の仕事で体験したことを参考にする
③世の中の統計データを参考にする
    続きを読む

上司から一言「人工知能について何か考えてみてくれないか」

翻訳すると、「外部環境として他社のAIの事例を調べ、内部環境として自社のビジネスプロセスを分析し、AIを導入できそうな領域を特定し、人工知能の開発方法を検討し、導入後にどのくらい収益に貢献するかのストーリーを作ってくれ」 ということです。

数あるムチャ振りの中で、最もムチャ振りな仕事と言えるでしょう。このセリフを言われたら、こう返してください。
「それなら〇〇さんが人工知能に詳しいみたいですよ。」
※〇〇には潰したい人の名前を入れましょう

逃げられなかった人へ
おめでとうございます。あなたは流行の最先端です。一緒にAIバブルに踊りましょう。
続きを読む

人工知能技術の歴史を変える1冊が出版されました。


現在人工知能技術(AI)は、Googleが牽引しています。その技術力は世界随一です。またWeb上の検索データを掌握しています。これからのGoogleの発展は、そのまま人工知能の発展といえるでしょう。

一方本書は、人工知能技術の本命であるディープラーニングについて、極めて分かりやすく説明してくれています。いずれ古典となる本です。

一般の人にディープラーニングという最先端技術を民主化したのです。現在本書の輪読会が多数開催されています。今後本書を学んだエンジニアが、世界を変えるためにAIの開発を行っていくでしょう。この本が日本語で出版されたことを、大変うれしく思います。 

多くの日本人に本書を読んで欲しいのですが、 140字以上の文字を見ると痙攣する人もいるかもしれません。ですので、本書のエッセンスを簡単に解説します。
続きを読む

↑このページのトップヘ