新規事業のつくり方

新しいことを学ぶことが好きです。今は機械学習や自然言語処理に興味があります。

「機械学習に興味があるITエンジニアだけど、仕事で機械学習を使う機会がない」
「現役のAIエンジニアだけど、やりたい分野があるのでフリーランスになりたい」

と考えてる方に、機械学習業界でおすすめのフリーランスエージェントを解説します。

ITスキルは転職もフリーランスも自由自在なプラチナパスポート

2019年11月の求人倍率は、全体で2.81倍、IT・通信が7.85倍でした。転職エージェントと話したことがある人ならば、多くの人が「知り合いのエンジニアを紹介してくれませんか」と聞かれていると思います。仕事は膨大にあるのですがエンジニアが足りていないのです。
続きを読む

「今の仕事がつまらない…」「ストレスが少なく楽しい仕事がしたい」と感じている方もいらっしゃると思います。

本記事のまとめは、「仕事がつまらない方は、"AIエンジニア"か"新規事業開発"に職種変更しよう」になります。

仕事がつまらない理由は「出来て当たり前の仕事」をしているから

仕事がつまらないと感じる一番の理由は、「出来て当たり前の仕事」を選んでいるからです。

出来て当たり前の仕事は、単純作業になりやすく、上司からきっちり管理されるのでストレスも大きく、年収も低く抑えられがちです。既存の仕組みに則って動く仕事は、結局のところ部品としての仕事です。クリエイティブなことはできません。良くてPDCAの名の元に既存業務を少し改善をするくらいでしょう。
続きを読む

皆さんは、CDOという役職をご存じでしょうか。

「最高デジタル責任者(chief digital officer)」や「最高データ責任者(chief data officer)」と言われており、企業のデジタル戦略やデータ活用を推進する役職のことです。日本でも徐々に設置が進んできています。

これからAIエンジニアを目指す方や、現在機械学習プロジェクトに関わる方にとって、CDOという役職はキャリアアンカーの1つになるでしょう。

私自身、現在機械学習エンジニアとして仕事をしていますが、そろそろ将来的なキャリアを考えたいと思い、CDOの職能を調査・分析し、本記事にまとめました。
続きを読む

ITエンジニアの方が、AI時代に生き残るための3つのキャリア戦略と、機械学習エンジニアへの転職方法を解説します。

AI技術を学ぶ理由は変化に対応するため

数々の市場調査結果を見る限り、人工知能技術がこれからの世の中に大きく影響を持つことは間違いありません。2030年には国内の市場規模が86兆円という推定が出されています。
特に日本では労働者が急速に減少しているため、人工知能への期待は高まるばかりです。

そのため人工知能や機械学習を学ぶことは、エンジニアにとって将来を開く大きな一手であることは間違いないでしょう。

参考記事:AI人材の年収が高い理由は?|SEがAIエンジニアに転職すべき2つの理由

続きを読む

人工知能や機械学習の仕事をする上で、「人工知能の学習と人間の学習は同じではないか」と思い始めたため、この記事を書いています。20~30代の若手社員のキャリア構築に参考になれば幸いです。

なおこの記事の結論は、「成長するには失敗経験を増やそう」になります。

続きを読む

人工知能やAIエンジニアの職種が脚光を浴びる中、一定比率で機械学習のプロジェクトが失敗に終わっています。

機械学習はデータ分析の一つであるため、プロジェクトが成功するかどうかは、データを見てみないと分からないという構造的な問題があります。

分析に必要なデータを準備できなければ、プロジェクトは失敗します。
また、分析対象業務に規則性が存在しない場合も、プロジェクトは失敗します。

機械学習プロジェクトには、落とし穴が多いです。

また近年の人工知能ブームで、多くの企業が人工知能や機械学習に関するプロジェクトを立ち上げ始めました。その結果、コミュニケーションに関わる課題が改めて浮き彫りになりました。
続きを読む

「AI人材」の求人数が増加してきました。

AIを活用したサービスが本格的に立ち上がり、事業開発責任者やプロダクトオーナーなどのポジションで採用が本格化しています。

また、AI分野の売上が急拡大したことによって、オペレーションを構築したりチームビルディングできる人材のニーズも高まっています。加えて、販売促進やAI営業の求人も増えてきています。

業界的には、主力のインターネット業界に加え、金融や不動産で特に需要が大きいようです。

市場を概観すると、事業戦略やソリューション営業など、いわゆるビジネス系職種がかなり増えた印象です。AIエンジニアの採用ももちろん多いですが、ピークはもう少し先になるように思われます。

テクノロジーは一つの武器であり、武器を使うためには戦場が必要です。どの戦場が実入りが大きいのか、他社に勝てるかどうかなど、ビジネスモデルの構築とそれを支える組織が必要になります。

では、ビジネス分野を担う人材は、どのくらいAIの知識が求められるのでしょうか?
続きを読む

「AIエンジニアになりたいけど、自分に合った企業の選び方が分からない」という声を頂きましたので、記事にまとめました。

人工知能市場は大企業中心に伸びている

AIブームが起きた理由は、ディープラーニング周辺の技術が進歩してできることが増えたので、特に大企業がAIを導入したがっているからです。

現在の人工知能市場を4つに分類してみました。
人工知能2
続きを読む

初心者向けにgensimとWord2Vecの利用方法と、類似単語の可視化を解説します。

Word2Vecは、自然言語処理の一つで大量のテキストデータを解析し、各単語の意味をベクトル表現をする手法です。単語の意味の近さや類似度などを計算することが出来ます。

Gensimとは

gensimは、統計的機械学習を使用した、教師なしトピックモデリングと自然言語処理のためのオープンソースライブラリです。無料で使えるPython向けライブラリです。

主な機能としては、fastTextWord2vecDoc2vec潜在意味解析(LSI/LSA)トピックモデル(LDA)TF-IDFなどです。ライセンスはLGPLです。

gensim公式:https://radimrehurek.com/gensim/index.html
続きを読む

人工知能や機械学習を勉強をしているシステムエンジニア(SE)が増えてきていると感じます。

ただでさえIT人材が不足している売り手市場にもかからわず、さらに新しいスキルを身に付けようと休日に勉強を続けるシステムエンジニアを見て、日本を支えているのは、間違いなく彼らのようなエンジニアであると強く感じます。

システムエンジニア(SE)の労働環境は非常に厳しい

これまで日本の情報システムを支えてきたのはシステムエンジニア(SE)です。しかし、必ずしも労働環境は恵まれたものではありません。
続きを読む

↑このページのトップヘ