テキストから画像を生成するAIは、「Text2Image」と呼ばれています。
今回は2021年に発表された、「Big Sleep」を試してみました。
今回は2021年に発表された、「Big Sleep」を試してみました。
BigSleepとは
「Big Sleep」は、「BigGAN」と「CLIP」を組み合わせたものです。テキストから画像を生成できます。Python向けライブラリとして利用できます。
BigGANとは
「BigGAN」は、1000カテゴリの画像を生成するモデルです。名前の通り、GANのネットワークを大規模化しています。DeepMindが開発しました。
2018年から「敵対的生成ネットワーク(GAN)」が流行りました。
GANは、「識別モデル」と「生成モデル」を互いに競い合わせることで精度を高めていく、教師なし学習です。生成モデルは、本物画像に似た画像を生成し、識別モデルが偽画像か本物画像かを見分けられるように学習していきます。BigGANはGANの発展形の一つです。
2018年から「敵対的生成ネットワーク(GAN)」が流行りました。
GANは、「識別モデル」と「生成モデル」を互いに競い合わせることで精度を高めていく、教師なし学習です。生成モデルは、本物画像に似た画像を生成し、識別モデルが偽画像か本物画像かを見分けられるように学習していきます。BigGANはGANの発展形の一つです。
CLIPとは
「CLIP(Contrastive Language-Image Pre-training)」は、画像分類モデルです。画像とテキストの4億ペアを事前学習させています。OpenAIが開発しました。
学習方法としては、画像-テキストのペアのベクトルの内積を最大化し、ペアではないベクトルの内積を最小化するようにベクトルを調整していきます。その結果、画像からもテキストからも、その特徴を表現するベクトルを取得できます。