新規事業のつくり方

新しいことを学ぶことが好きです。今は機械学習や自然言語処理に興味があります。

今年2020年は、5万人の人工知能エンジニアが不足してます。

2030年に86兆円市場に急成長している人工知能市場で※、非常に多くの企業が虎視眈々と参入の機会を伺っています。大企業の投資意欲も非常に高いです。

しかし、人工知能を作れる人材がいなければ市場に参入できません。そして人工知能が出来る人材は極めて希少性が高いため、待遇の良い大手IT企業や優良AIベンチャーなどにすぐに売れてしまいます。AIエンジニアが一部の企業に囲われているため、人材不足に拍車がかかっているのです。

企業がAI人材を求める姿は、まるで砂漠で水を求めるレベルです。ですので未経験からの転職もかなり多くなってきています。空前のAI人材バブルです。

※出典:EY総合研究所株式会社「人工知能が経営にもたらす『創造』と『破壊』」では、人工知能の市場規模は2020年に23兆円、200年に86兆円に拡大すると推計続きを読む

今後10年のAIの進化で、新たな情報システムの大半に機械学習処理が実装され、AI関連のサービスがビジネスの主流となり、結果的に今存在する約半分の仕事が無くなってしまいます。

生き残る方法の一つは、AIに仕事を奪われる側から、AIで仕事を奪う側になることではないでしょうか。

中国の春秋戦国時代の思想家、列子は「時を得る者は栄え、時を失う者は滅ぶ」と言われました。時代の流れとはすごいもので、流れに沿った1の努力は、時に10や100の結果を生むことがあります。具体的なアクションは、AIを理解し、キャリアにAIの色をつけていくことです。

本記事では、AIを全く知らない人が、AI人材になる方法を4ステップでまとめました。現職が銀行員、事務職、営業職などビジネス職種の方を想定しています。
人工知能20
続きを読む

このブログの内容は僕自身の勉強の軌跡です。あくまで個人の意見・備忘録であり、いかなる実在する企業や組織と無関係です。

自分自身のこと

これまでデータサイエンス領域(統計・機械学習・画像処理・自然言語処理)でのコンサルティング、サービス開発、技術開発に携わってきました。

事業開発担当から機械学習エンジニアに転職したので、ビジネスとAI技術を繋ぐことが得意です。また自分自身が未経験からエンジニア職に転身しているので、人材育成には熱意を持って取り組む方です。

出来ること

①データサイエンス領域での問題定義・分析実務・成果物納品まで一人称でできます。
②データサイエンス領域でのサービス開発、コンサルティングができます。
③データサイエンス領域でのマネジメント経験あります。

機械学習エンジニアへの転職経験

事業開発担当から機械学習エンジニアへの転職経験は、以下の記事にまとめています。

勉強法:AIエンジニアが教えるゼロから機械学習の勉強法
体験談:転職エージェントにボコボコにされて未経験からAIエンジニアに転職した話
まとめ:AIエンジニアが選ぶおすすめ転職サイト・転職エージェント

ご質問・お問い合わせ

ご質問やお問い合わせがございましたら、以下のメールアドレスにご連絡をお願い致します。
totemooisiiotya@yahoo.co.jp

若い友人が僕に言う。「機械学習ってなにが出来るんだい」。

また機械学習のことかと僕は思った。いささかこの話題に飽きているのだ。ただAIと言わないあたり、彼は見込みがあるのかもしれない。

「機械学習はデータから学習することだよ」僕はシンプルに伝えた。シンプルさはこの世の中で最も貴重な価値観の一つだ。

「学習とはどういうことだろう」彼は言う。鋭い指摘だ。確かに学習について僕は伝えていなかった。

「数式のパラメータを学習するんだ」僕はまたシンプルに伝える。パラメーターと言うべきか少し迷ったが、そんなことはどうでもよかった。

「数式のパラメータか」彼は僕の言葉を繰り返した。「つまりデータから数式を定めることが学習なんだね」彼は言葉を重ねた。

続きを読む

ここ数年間、AI開発の良質な学習コンテンツが増えました。

インターネットに、良質な解説記事が増えました。特にディープラーニングの解説記事周辺は、これでもかというくらい分かりやすく解説されています。

書籍では、松尾先生の「人工知能は人間を超えるか」を皮切りに、「python 機械学習プログラミング」と「ゼロから作るDeep Learning」が出版され、CONNPASS周辺で多くの勉強会が開催されました。

また、事前知識ゼロでも機械学習を学べる「pythonではじめる機械学習」が出版され、機械学習のハードルが大きく下がりました。これらの良質な書籍は、機械学習ブームの影の立役者でしょう。


そしてまた、機械学習を学ぶ上で最高の教材が発表されました。Udemyの「Pythonで機械学習:scikit-learnで学ぶ識別入門」です。

続きを読む

この記事を読んでほしい方
・人工知能の仕事に興味がある方
・AIエンジニアになりたい方

先日「SEから機械学習エンジニアに転職したい場合、どこの転職サイトに登録すれば良いか」と質問を受けました。

確かに、世の中にはたくさんの転職サイトがあって、どれに登録すればいいか迷うこともあると思います。私自身も結構悩みました。なので今回は、転職サイトの選び方を考えてみます。

参考記事:AI人材の年収が高い理由は?|SEがAIエンジニアに転職すべき2つの理由
続きを読む

初心者向けにgensimとWord2Vecの利用方法と、類似単語の可視化を解説します。

Word2Vecは、自然言語処理の一つで大量のテキストデータを解析し、各単語の意味をベクトル表現をする手法です。単語の意味の近さや類似度などを計算することが出来ます。

Gensimとは

gensimは、統計的機械学習を使用した、教師なしトピックモデリングと自然言語処理のためのオープンソースライブラリです。無料で使えるPython向けライブラリです。

主な機能としては、fastText、word2vecとdoc2vecアルゴリズム、潜在意味解析(LSA、LSI)、潜在ディリクレ配分(LDA)、TF-IDFなどです。ライセンスはLGPLです。

gensim公式:https://radimrehurek.com/gensim/index.html
続きを読む

人工知能や機械学習の未経験から、"AI人材"として転職する方法を解説します。

結論から書くと、「人工知能未経験の方は、AI企画人材になりましょう」というお話です。

本記事が想定する読者層
・人工知能未経験からAI人材になりたい方
・現在ビジネス系職種でAIに興味がある方
・今のAIブームに乗りたい方

AI市場の成長はデータ量が増えているから

IDC Japanが、国内のAIシステム市場は5年で16倍に急成長すると発表しました。2021年の市場規模は、2016年比で16倍となる2500億円とのこと。ビジネス領域でのAI活用がいよいよ本格化するそうです。

なぜこんなに市場が成長するのでしょうか。ハードウェアやディープラーニングの進化も理由にあげられますが、一番の理由はデータ量が増えたからでしょう。

2020年に世界のデータ量は、44兆GBになると言われています。この44兆GBのデータを、世界中のAIエンジニアが分析するわけです。しかもデータ量は、年間40%とかで増えていきます。そりゃ人材不足になるのも当たり前かもしれません。1GBのデータの分析でも相当きついですからね。

この44兆GBのデータを、いかに自社で集め、いかに活用していくかが今後の企業戦略のカギでしょう。そしてデータ活用の主役はAIです。

ではAI時代のキャリア戦略として、どのようなポジショニングがあるか解説いたします。

関連記事:AI営業職がAI時代の主役になるかもしれない続きを読む

みなさんは「AI人材」という言葉をご存知でしょうか。

第4次産業革命とも言われる人工知能ブームは、文字通り急激な変化を起こしました。企業は必死で戦略を見直しているものの、そもそも見直すだけの知識を持つ人材が社内におらず袋小路です。見直せる人材がいないので、必要な人材像を定義出来ず、とりあえず「AI人材」とビジネス界隈でよく利用されています。

とにかく今、圧倒的な人材不足です。ではこの「AI人材」にどしたらなれるのでしょうか。

関連記事:人工知能(AI)ブームに乗りたい人に切符を提供してみる
続きを読む

人工知能ブームがますます過熱感を帯びています。先週アルファ碁ゼロが、ルールを覚えさせるだけで人間を超えたというニュースが出ました。顧客や上司から説明を求められ、強化学習と教師あり学習の違いを解説したAI担当者も多かったのではないでしょうか。

先月上場したPKSHA Technologyが、時価総額1600億円を超えました。PER700倍、PBR170倍という信じられないような指数が付いています。少しでも株を知っている人なら、この指数がどれほど期待値を織り込んでいるか理解できると思います。

今の人工知能ブームは踊り場はありません。人工知能株式会社は、グローバルで国と企業を巻き込み信じられないスピードで進化し続けています。技術進歩が他の技術の進歩を生み出すことで、指数関数的に進歩しているからです。

本記事では、人工知能開発に携わる著者が、人工知能の最前線をご紹介し、ビジネスパーソンの生き残り方法を提案してみます。

過去記事:これだけは知っておけ!PythonでAI開発の基礎まとめ

続きを読む

↑このページのトップヘ