新規事業のつくり方

新しいことを学ぶことが好きです。今は機械学習や自然言語処理に興味があります。

皆さんは、CDOという役職をご存じでしょうか。

「最高デジタル責任者(chief digital officer)」や「最高データ責任者(chief data officer)」と言われており、企業のデジタル戦略やデータ活用を推進する役職のことです。日本でも徐々に設置が進んできています。

これからAIエンジニアを目指す方や、現在機械学習プロジェクトに関わる方にとって、CDOという役職はキャリアアンカーの1つになるでしょう。

私自身、現在機械学習エンジニアとして仕事をしていますが、そろそろ将来的なキャリアを考えたいと思い、CDOの職能を調査・分析し、本記事にまとめました。
続きを読む

ITエンジニアの方が、AI時代に生き残るための3つのキャリア戦略と、機械学習エンジニアへの転職方法を解説します。

AI技術を学ぶ理由は変化に対応するため

数々の市場調査結果を見る限り、人工知能技術がこれからの世の中に大きく影響を持つことは間違いありません。2030年には国内の市場規模が86兆円という推定が出されています。
特に日本では労働者が急速に減少しているため、人工知能への期待は高まるばかりです。

そのため人工知能や機械学習を学ぶことは、エンジニアにとって将来を開く大きな一手であることは間違いないでしょう。

参考記事:AI人材の年収が高い理由は?|SEがAIエンジニアに転職すべき2つの理由

続きを読む

人工知能や機械学習の仕事をする上で、「人工知能の学習と人間の学習は同じではないか」と思い始めたため、この記事を書いています。20~30代の若手社員のキャリア構築に参考になれば幸いです。

なおこの記事の結論は、「成長するには失敗経験を増やそう」になります。

続きを読む

人工知能やAIエンジニアの職種が脚光を浴びる中、一定比率で機械学習のプロジェクトが失敗に終わっています。

機械学習はデータ分析の一つであるため、プロジェクトが成功するかどうかは、データを見てみないと分からないという構造的な問題があります。

分析に必要なデータを準備できなければ、プロジェクトは失敗します。
また、分析対象業務に規則性が存在しない場合も、プロジェクトは失敗します。

機械学習プロジェクトには、落とし穴が多いです。

また近年の人工知能ブームで、多くの企業が人工知能や機械学習に関するプロジェクトを立ち上げ始めました。その結果、コミュニケーションに関わる課題が改めて浮き彫りになりました。
続きを読む

「AI人材」の求人数が増加してきました。

AIを活用したサービスが本格的に立ち上がり、事業開発責任者やプロダクトオーナーなどのポジションで採用が本格化しています。

また、AI分野の売上が急拡大したことによって、オペレーションを構築したりチームビルディングできる人材のニーズも高まっています。加えて、販売促進やAI営業の求人も増えてきています。

業界的には、主力のインターネット業界に加え、金融や不動産で特に需要が大きいようです。

市場を概観すると、事業戦略やソリューション営業など、いわゆるビジネス系職種がかなり増えた印象です。AIエンジニアの採用ももちろん多いですが、ピークはもう少し先になるように思われます。

テクノロジーは一つの武器であり、武器を使うためには戦場が必要です。どの戦場が実入りが大きいのか、他社に勝てるかどうかなど、ビジネスモデルの構築とそれを支える組織が必要になります。

では、ビジネス分野を担う人材は、どのくらいAIの知識が求められるのでしょうか?
続きを読む

「AIエンジニアになりたいけど、自分に合った企業の選び方が分からない」という声を頂きましたので、記事にまとめました。

人工知能市場は大企業中心に伸びている

AIブームが起きた理由は、ディープラーニング周辺の技術が進歩してできることが増えたので、特に大企業がAIを導入したがっているからです。

現在の人工知能市場を4つに分類してみました。
人工知能2
続きを読む

人工知能や機械学習を勉強をしているシステムエンジニア(SE)が増えてきていると感じます。

ただでさえIT人材が不足している売り手市場にもかからわず、さらに新しいスキルを身に付けようと休日に勉強を続けるシステムエンジニアを見て、日本を支えているのは、間違いなく彼らのようなエンジニアであると強く感じます。

システムエンジニア(SE)の労働環境は非常に厳しい

これまで日本の情報システムを支えてきたのはシステムエンジニア(SE)です。しかし、必ずしも労働環境は恵まれたものではありません。
続きを読む

「機械学習を理論からしっかり学びたい」「機械学習ライブラリは少し使えるけど中でどんな計算しているか知りたい」「微分や線形代数の知識に不安がある」という方向けに、素晴らしい教材が発表されました。

Udemyの「【キカガク流】人工知能・機械学習 脱ブラックボックス講座 - 中級編」です。

機械学習習得の前に立ちはだかる数学の壁

「機械学習には数学の知識が必要」とか「線形代数や微分が分からないと機械学習は分からない」という声を聞いたことがあるかもしれません。

確かにこの意見はその通りです。
続きを読む

「人工知能開発を独学で学びたい」「人工知能をいざ学ぼうと思っても何から手を付けたらよいのか分からない」 という方向けに、最短でAI開発を習得する方法を書きました。

学びなおしの必要性が高まる

日本政府が「リカレント教育(社会人が学校に戻って学び直すこと)」推進のため、2019年度以降に約5000億円の予算を投入する方針を発表しました。

確かに、人工知能が専門家の仕事を代替しつつあるため、誰もが学び直し、新しいスキルを習得することが求められる時代となりました。技術的失業による1億学生時代です。

しかし、年功序列企業で忙しく働く日本のサラリーマンが、大学などの教育機関に戻ることが本当にできるのでしょうか。現実的には、独学で習得するケースも多くなることが想定されます。

いずれにせよ、サラリーマンにとって、"勉強"という単語がもう一度求められてくることは間違いなさそうです。
続きを読む

2020年までに5万人の人工知能エンジニアが不足すると言われています。

2020年に23兆円市場に急成長する人工知能市場について※、非常に多くの企業が虎視眈々と参入の機会を伺っています。

しかし、人工知能を作れる人材がいなければ市場に参入できません。そして人工知能が出来る人材は極めて希少性が高いため、待遇の良い大手IT企業や優良AIベンチャーなどにすぐに売れてしまいます。AI人材が特定企業に囲われているため、人材不足に拍車がかかっているのです。

企業がAI人材を求める姿は、まるで砂漠で水を求めるレベルです。ですので未経験からの転職もかなり多くなってきています。今は空前のAI人材バブルです。

※出典:EY総合研究所株式会社「人工知能が経営にもたらす『創造』と『破壊』」では、人工知能の市場規模は2020年に23兆円、200年に86兆円に拡大すると推計続きを読む

↑このページのトップヘ